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Abstract. Photonic analogs of the moiré superlattices mediated by interlayer electromagnetic coupling are
expected to give rise to rich phenomena, such as nontrivial flatband topology. Here, we propose and
demonstrate a scheme to tune the flatbands in a bilayer moiré superlattice by employing a band offset.
The band offset is changed by fixing the bands of one slab while shifting those of the other slab, which is
accomplished by modifying the thickness of the latter slab. Our results show that the band-offset tuning
not only makes some flatbands emerge and disappear but also leads to two sets of flatbands that are
robustly formed even with the change of band offset over a broad range. These robust flatbands form
either at the AA-stack site or at the AB-stack site, and as a result, a single-cell superlattice can support a
pair of high-quality localized modes with tunable frequencies. Moreover, we develop a diagrammatic
model to provide an intuitive insight into the formation of the robust flatbands. Our work demonstrates a
simple yet efficient way to design and control complex moiré flatbands, providing new opportunities to
utilize photonic moiré superlattices for advanced light–matter interaction, including lasing and nonlinear
harmonic generation.
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1 Introduction
Moiré physics is a nascent yet exciting research direction that
has led to important discoveries in various areas, ranging from
electronics to optics and acoustics.1–4 Moiré physics is associ-
ated with the emergence of novel phases that are otherwise
not present in the individual constitutive lattices, leading to in-
triguing physical phenomena. For instance, when two mono-
layer materials are brought into contact, the moiré potentials
have been predicted and demonstrated to strongly modify the
optical properties of the bilayer materials.5–9 Indeed, the initial
breakthrough was made in condensed matter systems by discov-
ering exotic phenomena in moiré superlattices, including

unconventional superconductivity,10 moiré excitons,6–9 and
anomalous Hall ferromagnetism,11 to name just a few. These
novel moiré effects are discovered in superlattices with appro-
priate interlayer coupling, but realization of a nontrivial super-
lattice requires fine tuning of the two-dimensional (2D)
materials, as initiated by the seminal work on twisted bilayer
graphene.10,12 The difficulty arises from the reliance of the
moiré effects on the formation of flatbands that only occur at
magic angles in the superlattices.10,12,13 More recently, the con-
cept of moiré physics was introduced into the realm of optics,
where flexible control on superlattices is feasible.2,4 The tuna-
bility of photonic superlattices is particularly beneficial for ex-
ploring flatband physics and relevant photonic applications.

In photonics, several research groups have studied intriguing
moiré physics with mismatched photonic lattices14,15 and twisted
bilayer photonic slabs.16–20 The moiré bands are typically tuned*Address all correspondence to Peilong Hong, plhong@uestc.edu.cn; Yi Liang,
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either by twisting the bilayer slabs or by modifying the optical
distance between the two slabs. Especially, the flatbands
relevant to novel moiré physics are found at photonic magic
angles,16,20 demonstrating a striking similarity with the electronic
twisted bilayer graphene. In addition, a flatband can also emerge
by setting the optical distance to specific values, as discovered
in the 2D twisted superlattices16,19 and one-dimensional mis-
matched superlattices.15 The appearance of flatbands underlies
various optical phenomena, such as topological transition of
optical dispersion contours,17 non-Anderson-type localization
of light,21 twisting-induced optical solitons,22 and moiré
quasi-bound states in the continuum.23 Obviously, flatbands play
an essential role in exploring novel physics in optics. A flatband
mode is typically localized,24,25 making it highly valuable for
manipulating light–matter interaction, such as lasing26 and op-
tical harmonic generation.27 Therefore, flatband formation lies at
the heart of intriguing moiré physics and relevant applications. It
is desirable and critical to develop efficient strategies to tune the
moiré flatbands.

In this work, we employ the band offset in the band domain
as an efficient knob to tune the flatbands in a mismatched bi-
layer superlattice. The band offset is changed by fixing the
bands of one slab while shifting those of the other slab, which
are realizable by modifying the thickness of the latter slab in
practice. Remarkably, the band offset not only triggers the ap-
pearance and disappearance of a few flatbands but also leads to
two sets of flatbands that can robustly form within a broad band-
offset range. By taking advantage of the robustly formed flat-
bands, we further demonstrate a doubly resonant single-cell
superlattice with localized modes originating from the flatbands,
and the frequencies of these modes are tunable by band offset.
Such localized modes hold great promise for manipulating
advanced light–matter interaction. Moreover, we develop a dia-
grammatic model to provide an intuitive insight into the forma-
tion of these robust flatbands, which can inspire new design
approaches for moiré superlattices with tailored flatbands.
Our work provides an efficient way to understand and control
the formation of flatbands. Since the robust flatbands can be

achieved without requiring strict magic configuration, they
may have great potential in relevant applications based on
moiré devices.

2 Results

2.1 Scheme and Adjustable Band Offset

Our superlattice is constructed by stacking two mismatched
silicon slabs in a commensurate configuration, shown in
Fig. 1(a). The unit size of slab 1 is a1 ¼ 2N∕ð2N þ 1Þa0, while
that of slab 2 is a2 ¼ 2ðN þ 1Þ∕ð2N þ 1Þa0. Here, N is an in-
teger (fixed to be 13 hereafter), and a0 ¼ 300 nm. The resulting
moiré superlattice has a unit size aM ¼ ðN þ 1Þa1 ¼ Na2.
Certainly, one can choose other values of N, and aM changes
accordingly. The width of the silicon strip is fixed to be
wi ¼ 0.7aiði ¼ 1,2Þ. In the superlattice, slab-1’s silicon strip
can align with slab-2’s silicon strip, creating the AA-stack site,
indicated as “A” in Fig. 1(a). Slab-1’s silicon strip can also align
with the slab-2’s air gap, creating the AB-stack site, indicated as
“B” in Fig. 1(a).

To exploit the band offset as a degree of freedom to tune the
moiré bands in the superlattice, we keep the thickness (h1) of
slab 1 fixed at 0.4a0, but change the thickness (h2) of slab 2
from 0.4a0 to a0. As a result, the bands of slab-1 remain un-
changed, while the spectral positions of slab-2’s bands are
shifted. Hence, the band offset between the two slabs is modi-
fied. Hereafter, we focus on the TE bands, of which the electric
field is polarized along the z axis. The TE bands at different
conditions are obtained by solving the wave equation,

∇ × ð∇ × EzÞ − ω2

c20
ϵrEz ¼ 0; (1)

where, ω is the frequency, c0 is the velocity of light in the vac-
uum, and ϵr is the relative permittivity. The refractive indices of
the silicon and the air are set to be 3.47 and 1, respectively. In
this work, the wave equation is numerically solved through

(b)

(a)

Fig. 1 (a) Schematic diagram of a silicon moiré superlattice. (b) Band offset adjusted by the thick-
ness (h2) of slab-2. Here, the bands are calculated only for a single slab in the absence of the other
slab. k i

a ¼ 2π∕ai ði ¼ 1,2Þ. Note that more than two bands for slab-2 emerge within the region of
interest by adjusting h2, but only two main bands Li and Ui are marked.
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finite-element computation with Comsol Multiphysics. Notably,
some bands of the photonic slabs are above the light line
ω ¼ c0kx, and therefore light can leak into the free space
surrounding the slabs. Consequently, the eigenfrequency is
typically a complex value ωr þ iγ, and the quality factor Q ¼
ωr∕ð2γÞ describes how well an eigenmode is confined in
the slabs.

Figure 1(b) shows the TE bands of the two slabs at different
h2 (¼ 0.4a0; 0.7a0; a0). For clarity, we only draw the eigenm-
odes with quality factors Q > 50, and therefore some bands
look incomplete in the figure. Within the spectral range of in-
terest, slab-1 has two lowest bands (L1 and U1) that remain un-
changed in the band domain. Slab-2 also has two lowest bands
(L2 andU2) at h2 ¼ 0.4a0, and an initial band offset between L1

and L2 (U1 and U2) can be seen. When h2 increases to 0.7a0, L2

and U2 move downward, while U2 intersects with another band.
As h2 increases to a0, L2 and U2 move downward farther.
Clearly, the band offset between L1 and L2 (U1 and U2) in-
creases with the increase of the thickness h2. Thus, the band
offset is adjusted efficiently by scanning the thickness h2 of
slab-2.

2.2 Robust Flatbands

Next, we investigate how the moiré bands are tuned by the
band offset. The moiré bands of the superlattice (with
h2 ¼ 0.4a0; 0.7a0, and a0) are shown in Fig. 2(a). The cell
length aM of the superlattice is much larger, i.e., N times of that
of slab-2. As a result, while a band of slab-2 can extend over
2π∕a2 in the k-space, the superlattice has mini-bands that only
extend over 1∕N of 2π∕a2 in the k-space. We have identified the
flatbands that have a frequency deviation meeting the condition
ðfmax − fminÞ∕ðfmax þ fminÞ < 0.15%. For clarity, the flatbands
with similar field patterns are marked by the same symbol. The

results show that multiple flatbands emerge at each band offset,
but some flatbands may disappear when the band offset
changes. Specifically, the flatbands C1

A; C
4
A; C

1
B; C

3
B, and C4

B
emerge at h2 ¼ 0.4a0, but disappear at h2 ¼ 0.7a0 and h2 ¼ a0.
The flatband C2

A has a frequency deviation of 0.08% at
h2 ¼ 0.4a0 and a smaller frequency deviation of 0.02% at h2 ¼
0.7a0 but disappears at h2 ¼ a0. The flatband C3

A has a fre-
quency deviation of 0.05% and a larger frequency deviation
of 0.12% at h2 ¼ 0.7a0 but disappears at h2 ¼ a0. Such emerg-
ing and disappearing flatbands demonstrate the important role
of band offset in tuning the flatbands.

Remarkably, there are four flatbands that can form robustly at
different band offsets through the entire scan range, labeled as
R1
A; R

2
A; R

1
B, and R2

B in Fig. 2(a) for clarity. The field patterns of
these robust flatbands are shown in Fig. 2(b). It is seen that the
R1
A and R2

A modes are strongly localized around the A site of the
superlattice, while the R1

B and R2
B modes are strongly localized

around the B site of the superlattice. The stable formation of the
flatbands is quite desirable in practice, because they can be
achieved without the need for a subtle magic configuration.

2.3 Doubly Resonant Single-Cell Superlattice

The simultaneous emergence of multiple robust flatbands paves
the way toward a multiply resonant superlattice with tunable
frequencies, since scanning the band offset does not make these
flatbands disappear but rather allows us to control their spectral
positions. Particularly, these robust flatbands can even be sup-
ported by only a single-cell superlattice, due to their strongly
localized wave functions. We thus calculate the eigenfrequen-
cies of localized modes with a single-cell superlattice and focus
on those originating from the robust flatbands. The R1

A and R2
A

modes are studied with an A-site centered single-cell

(b)

(a)

Fig. 2 (a) Moiré bands at different band offsets. The flatbands are marked by different symbols,
where C labels the conventional flatbands that emerge and disappear by band-offset tuning, R
labels the robust flatbands that preserve. The subscript A (or B) such as in R1

A denotes the center
of field pattern at the A (or B) site, and the superscript i ¼ 1,2; � � � denotes different flatbands. Here,
kM ¼ 2π∕aM , and the same symbol at different h2 indicates that the eigenmodes have similar field
patterns. (b) The field patterns jEeigenðkx ¼ 0Þj of the four robust flatbandsR1

A;R
2
A;R

1
B , andR2

B in a
single cell of a periodic superlattice at h2 ¼ 0.7a0. The field magnitude is represented by a re-
versed hot color map with the maximum in black and the minimum in white.
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superlattice, while R1
B and R2

B modes are studied with a B-site
centered single-cell superlattice. The spectral positions of R1

A
and R2

A modes at different h2 are shown in Fig. 3(a), and those
for R1

B and R2
B modes are shown in Fig. 3(c). The R1

A and R2
A

modes are nearly degenerate at 0.4a0 and gradually separate
when h2 increases. In contrast, R1

B and R2
B modes start at a large

spectral separation and become closer in spectrum when h2 in-
creases. Notably, the frequency of R1

B mode keeps almost invari-
ant against the change of h2.

In addition, we calculated the quality factor (Q) of these flat-
band modes at different h2. The quality factor of R1

A mode peaks
at h2 ¼ 0.64a0 with a value ∼5000, but keeps larger than 1000
within the entire range, as shown in Fig. 3(b). The quality factor
of R2

A mode peaks near h2 ¼ 0.5a0 with a value ∼6000, but
keeps larger than 1000 up to h2 ¼ 0.9a0. For R1

B and R2
B modes

shown in Fig. 3(d), the quality factor of R1
B mode decreases

slightly from ∼2000 to ∼1300 within the scan range, while
the quality factor of R2

B mode keeps a high value that is between
∼12; 000 and ∼43; 000. These results show that the robust-
flatband resonances hold high quality even in a single-cell
superlattice, demonstrating the possibility of constructing a
high-quality multiply resonant superlattice.

2.4 Diagrammatic Model

Next, we provide an intuitive insight into the formation of the
robust flatbands by employing a simplified two-site coupled-
band diagram. Our model originates from the realization that
the local dielectric structure continuously changes from the A
site to the B site in the superlattice, i.e., other local positions
in the superlattice have effective dielectric structures belonging
to the intermediate states between the A site and B site.
Consequently, we consider a two-site diagram that only consists
of two sets of bands related to the A site and B site. Specifically,
one set of bands corresponds to a fictitious lattice with an A-site-
like unit cell, and the other set of bands corresponds to a

fictitious lattice with B-site-like unit cell. The bands of the ficti-
tious lattices originate from the interlayer coupling between the
two slabs. Under a two-mode coupling approximation, the ei-
genfrequencies of coupled eigenmodes are given as28

ωc
� ¼ ω1 þ ω2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ

�
ω1 − ω2

2

�
2

s
; (2)

where, ωsðs ¼ 1,2Þ denotes the frequency of the eigenmode of
slab i such as Li∕Ui, schematically shown in Fig. 4(a), and ωc

�
denotes the frequencies of the coupled eigenmodes. In general, a
strong interlayer coupling coefficient μ leads to a larger spectral
gap between the pair of coupled eigenmodes compared to
jω1 − ω2j. The interlayer coupling coefficient μ is determined
by the overlap of the field patterns that correspond to the pair
of eigenmodes ωsðs ¼ 1,2Þ.29 Specifically, Liði ¼ 1,2Þ has a
spot-like field pattern with its maxima at the silicon strip, while
Uiði ¼ 1,2Þ has a spot-like field pattern with its maxima at the
air gap. At the A site, the field maxima of L1 (U1) align with that
of L2 (U2), such that their coupling coefficient μ is large. The
strong coupling increases the spectral gap between L1 and L2

(U1 and U2), forming a coupled band diagram, schematically
shown in Fig. 4(b). At the B site, the field maxima of L1 align
with that of U2, and thus their coupling coefficient μ is large.
The strong coupling increases the spectral gap between L1 and
U2, leading to a bandgap structure, schematically shown in
Fig. 4(c). The two sets of coupled bands in Figs. 4(b) and
4(c) constitute our two-site coupled-band diagram.

In this simplified two-site band diagram, two bands (rA1 and
rA2) at the A site always locate within the bandgap at the B
site. This unique band structure gives rise to optical modes that
are hosted at the A site but do not extend to the B site.
Consequently, a pair of robust flatbands always form at the
A site, as long as the coupled-band gap structure does not
change. This explains the robust formation of the flatbands

(a) (c)

(b) (d)

Fig. 3 Tunable spectral positions of (a) the R1
A and R2

A modes and that of (c) the R1
B and R2

B

modes. The quality factors (Q) of (b) the R1
A and R2

A modes and that of (d) the R1
B and R2

B modes
have high values.
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R1
A and R

2
A at the A site in the superlattice. On the other hand, the

pair of coupled bands at the B site (rB1 and rB2) reaches ex-
trema at the band edges, which are related to the robust flatbands
R1
B and R2

B. Although the coupled-band edges do not locate
within a bandgap at the A site, they are in resonance with only
one band point at the A site. Moreover, the strong band coupling
makes the spatial patterns of coupled eigenmodes at the B site
poorly overlap with those of the resonant eigenmodes at the A
site. As a result, the leakage to the A site is weak, leading to the
formation of R1

B and R2
B localized at the B site. The flatbands R1

B
and R2

B are stable as long as the coupled-band structure persists.
Thus, the simple two-site band diagram gives us an intuitive
understanding of the formation of the robust flatbands.

To further confirm the diagrammatic model, we implement
full-wave calculation to obtain the accurate coupled bands
of the A-site and B-site-like fictitious lattices separately.
Figures 5(a)–5(c) show the two-site coupled bands at different
h2 (¼0.4a0; 0.7a0, and a0). The crossing bands at the A site, as
well as the bandgap at the B site, are clearly seen in the results.
Moreover, we draw the field patterns of the four modes marked
by A1, A2, B1, and B2 in Fig. 5(b), as shown in Fig. 5(d). These
field patterns are in a good agreement with the field patterns of
the robust flatbands at the A site (R1

A and R2
A) and the B site

(R1
B and R2

B), shown in Fig. 2(b). This agreement adequately
confirms our theoretical explanation on the formation of the ro-
bust flatbands.

3 Discussion
The robust flatbands differ significantly from those that are sen-
sitive to the change of band offset, indicating the complex for-
mation process of moiré flatbands. The proposed diagrammatic
model provides an intuitive understanding on the formation of
robust flatbands with regard to the band offset. Notably, the sit-
uation in twisted superlattices is much more complicated than
the global band offset simply used in our work. When the twist
angle is adjusted, locally variable band offsets are introduced in
the parameter space, together with twist-dependent dielectric
structures in real space. Nonetheless, our results may provide
a straightforward approach for comprehending the formation
of relatively stable flatbands in twisted superlattices.30,31

In addition, the diagrammatic model can guide new designs
of moiré superlattices. For instance, one can intentionally design
two unit cells and let them form a two-site band diagram similar
to that shown in Figs. 4(b) and 4(c). The two unit cells can be
bilayer ones, as well as multilayer ones or even monolayer ones.
Then, a moiré superlattice can be constructed by connecting the

(a) (b) (c)

Fig. 4 Two-site coupled-band diagram. (a) The band map represents the lowest two bands Li and
Ui (i ¼ 1,2) of individual slabs of the moiré superlattice. (b) The band structure for an A-site-like
fictitious lattice. The interlayer coupling between L1 and L2 (U1 and U2) is maximized (as indicated
by the arrows). (c) The band map of a B-site-like fictitious lattice. The interlayer coupling between
L1 and U2 is maximized.

(a)

(b)

(c)

(d)

Fig. 5 Coupled bands for the A-site-like and B-site-like fictitious lattices at (a) h2 ¼ 0.4a0,
(b) 0.7a0, and (c) a0. (d) The field patterns for the four different band-edge modes as indicated
by A1, A2, B1, and B2 in (b). Again, the field magnitude is represented by a reversed hot color map.
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two unit cells with intermediate-state cells, of which the forma-
tion of robust flatbands can be predicted under the two-site band
diagram. The field patterns of the robust flatbands can also be
estimated by referring to the eigenmodes of the pair of unit cells.
Clearly, our two-site diagrammatic model significantly simpli-
fies the design of moiré superlattices with tailored flatbands.

Furthermore, due to the robust formation of these flatband
modes, it is possible to achieve dynamic control of their frequen-
cies in practice. For instance, one can fabricate a lattice with multi-
ple domains, and each domain has a different thickness. By shifting
the multiple-domain lattice with regard to another finite-size lattice
of fixed thickness, the flatband modes stably form in the bilayer
region but alter their frequencies. Therefore, the band-offset tuning
has great potential for enhancing functionalities of moiré photonic
devices. Certainly, structural perturbations in the superlattice could
affect the flatbands, with the extent of this influence dependent on
the specific fabrication conditions. Further studies are necessary to
explore and understand these effects, which may be useful for ex-
perimental implementations, especially as several experimental
techniques have demonstrated their capability of realizing nontri-
vial moiré superlattices, including nanofabrication,26 photorefrac-
tive effect,21,22 and femtosecond-laser writing.32

4 Conclusion
In conclusion, we have demonstrated that the band offset can be
an efficient knob to tune the flatbands in a moiré superlattice.
The band offset not only makes a few flatbands emerge and dis-
appear but also leads to multiple robust flatbands with their
wave functions localized at different stacking sites. These robust
flatbands offer promising avenues for constructing multiply res-
onant moiré superlattices with tunable frequencies, as illustrated
by the analysis of a single-cell superlattice. Moreover, we have
developed a diagrammatic model that provides an intuitive in-
sight into the formation mechanism of the two sets of robust
flatbands, which can inspire new designs of moiré superlattices.
Our scheme may be further developed with AI-empowered tech-
niques, which may prove relevant to next-generation device de-
signs for nanophotonics.33 In particular, this work represents an
important step toward controlling and understanding complex
flatbands in moiré superlattices and may bring about new op-
portunities for exploiting moiré superlattices in manipulating
advanced light–matter interactions, such as lasing,26 nonlinear
harmonic generation,27 and enhanced free-electron radiation.34

Data Availability
The data that support the findings of this article are not publicly
available. They can be requested from the corresponding au-
thors upon reasonable request.
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